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Abstract

Oscillatory nucleation regime in counter flows of vapor and falling droplets is considered. Experiments with such system were made in
a diffusion cloud chamber. Oscillation is the results of the feedback between vapor depletion due to condensation on droplets and the
value of a supersaturation in nucleation zone. For different pressure of carrier gas (helium) and temperatures, experimental results are
presented for dodecane vapor. The new mathematical model of oscillatory nucleation is developed. Three characteristic times defines the
duration of the process: nucleation time, time of droplets growth and falling, and, time of diffusion restoration of vapor profile. Exper-
imental data and calculate ones are in good agreement.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Counter flows of a vapor–carrier gas mixture and drop-
lets often can be found in many contact heat and mass
transfer exchangers, chemical reactors and other devices.
For example, such processes take place during evaporative
cooling of falling water droplets in the counter flow of fresh
air in cooling towers [1]. Experimental and theoretical
investigation of the kinetics of phase transition in such
highly nonuniform and nonequilibrium system face great
difficulties, especially if feedback between the processes of
heat and mass transfer and phase transition are considered.
This manifestation, which can be a release of the latent heat
of a phase transition or a depletion of vapor composition,
leads to strongly nonlinear processes in the systems. One
such process is an oscillatory nucleation. We start the inves-
tigation of oscillatory nucleation in counter flows, first by
considering this phenomena in a diffusion cloud chamber
(DCC), where the relevant parameters are well controlled
during experiments, and the theoretical investigation of
the one-dimensional processes has high accuracy. In the
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DCC, all processes may be accurately described by the
one dimensional approximation.

The diffusion cloud chamber provides excellent opportu-
nities for simulation of oscillatory nucleation in counter
flows (see Fig. 1). The flow of falling and growing droplets
is one flow; the diffusion vapor flow is the counter flow [2].
It is well known that the highly nonequilibrium but steady-
state medium in the DCC is an amplifier of weak signals; in
particular, it is a sensitive detector of some trace impurities
in a vapor [3]. Nucleation is a channel for the relaxation of
the nonequilibrium medium.

To create higher nonequilibrium states, the temperature
difference between plates of the DCC has to be increased. At
some point the nonlinear effects of mass transfer interaction
between new phase particles and counter diffusion flow of
vapor, result in the breakdown of the steady-state condition
of chamber performance, and the system undergoes a tran-
sition from steady-state behavior to stable oscillatory
behavior with one basic frequency. The phenomenon of
oscillatory nucleation in counter flows in the DCC was
described in Ref. [4]. It is worth to note that oscillatory
nucleation is a beautiful picture during visualization
experiments.

According to the Le Chatelier’s principle [5], this transi-
tion from steady-state mode to the oscillatory mode is a
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Fig. 1. The relative positions of the nucleation zone and detecting He–Ne laser in a diffusion cloud chamber.

Nomenclature

Ai amplitude of ith mode, m�3

B parameter, K
C parameter, m3 s�1

D vapor diffusion coefficient, m2/s
d width of droplet cloud, m
T temperature, K
g the gravity acceleration, m s�2

g* the number of molecules in the critical cluster,
dimensionless

H the chamber height, m
I sink in diffusion equation, m�3 s�1

J nucleation rate, m�3 s�1

k Boltzmann’s constant, J K�1

L mass transfer interpolation function, m4 s�1

m vapor molecule mass, kg
N the number droplet per unit of volume in the

cloud, m�3

n the number density of vapor, m�3

P pressure, Pa
R droplet radius, m
S supersaturation, dimensionless

t time, s
t* restoration time of the first mode, s
ts temporal width of droplet cloud, s
v velocity of droplet cloud, m/s
x spatial variable, m
z droplet position, m
zs saddle point height, m

Greek symbols

kv the mean free path of vapor molecule
ql liquid density, kg m�3

s1 nucleation time, s

Subscripts

0 initial
b bottom plate
i the number of modes
l the linear profile
s saddle point of free energy of cluster formation
sat saturated
u upper plate
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reaction of a thermodynamic system after it was pushed to
more nonequilibrium state. In particular, in the case being
considered this transition is to decrease the supersaturation
value in nucleation zone, as a supersaturation is the mea-
sure of a metastability of the system.

The physical mechanism of the oscillatory nucleation in
DCC is the following. Droplets start to grow in the nucle-
ation zone of a DCC. The growth of new phase particle leads
to vapor depletion in this zone and in the upper part of the
chamber. The larger the number density of droplets the lar-
ger vapor depletion due to the condensation process. Rela-
tively large droplets begin to fall with increasing velocity, as
the gravity is proportional to the cube of the droplet radius
and the drag force is proportional only to the droplet radius
in the approximation of a continuous medium. The contri-
bution of thermophoresis is important only for droplets of
nanometer scale. The vapor condensation on falling drop-
lets leads to further vapor depletion. The nucleation rate,
which affects on the number density of droplets, is very sen-
sitive to vapor density. When the vapor flow into the nucle-
ation zone is depleted nucleation practically stops, which
decreases the vapor depletions. Finally, after the drops fall
to the liquid pool at the bottom of the chamber, the diffusion
restores the vapor profile and nucleation starts again. The
aim of this work is to give a theoretical description, (which
does not use empirical parameters), for the interconnected
heat and mass transfer processes affecting on the basic
parameters of the oscillatory nucleation in DCC.

The problems of describing a feedback mechanism,
related to condensation in aerosol systems, were discussed



Fig. 2. The scattered light signal caused by nucleated particles in the
diffusion cloud chamber and corresponding power spectrum.

Table 1

Experiments Tb Tu P (Pa)

a 396.62 278.18 1.18 · 104

b 393.32 278.05 1.137 · 104

c 392.28 278.15 1.13 · 104

d 390.92 277.85 1.11 · 104

e 389.02 277.92 1.093 · 104

f 377.5 278.6 1.03 · 104

g 365.65 279.52 9.4 · 103
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earlier in an important work [6]. General consideration of
the conditions giving rise to oscillation in a nonlinear sys-
tem with feedback is given in [7].

The outlook of paper is the following. We present our
experimental data in chapter two. The new nonlinear math-
ematical model of oscillatory nucleation is described in the
third chapter. Finally, we discuss and summarize our
results.

Preliminary results of this investigation have been pub-
lished in [8].

2. Description of experiments

Detailed descriptions of the design and use of DCC have
been given elsewhere [2, and the references therein], so only
a brief description of the experimental setup, and experi-
ments performed in the oscillatory regime is given here.
The schematic drawing of the DCC is shown in Fig. 1.
The DCC consists of a cooled top and heated bottom plate
separated by a glass ring. The surfaces of both plates are
coated with a thin film of the nucleating fluid. The temper-
atures of the top and bottom plates are controlled by circu-
lating fluids from temperature controlled reservoirs (not
shown in the drawing). In operation the sample liquid
evaporates from the warm bottom plate, and vapor diffuses
upward through a carrier gas to condense on the cooler
upper plate. The geometry of the chamber is such that
the temperature and supersaturation profiles within the
chamber can be accurately calculated by solving the one-
dimensional heat and mass transfer problem. The mea-
sured chamber parameters, total pressure, temperature at
the surface of the liquid pool, and temperature of the upper
plate provide the necessary boundary conditions for the
calculation. When the supersaturation is large enough
homogeneous nucleation of the vapor occurs in a zone of
finite width, approximately 10% of the total chamber
height (H), around the plane in which the maximum nucle-
ation rate occurs (�0.7H). Due to the small size (�1 nm)
and transient nature of the condensation nucleus it cannot
be directly detected. It is only after the nucleus has grown
several orders of magnitude to around 25 lm the result of
nucleation is detected. In the experiments described here
nucleation is detected the forward scattering light from a
helium–neon laser by the macroscopic droplets falling from
the nucleation zone. A photomultiplier was used to collect
the scattered light signal. The output of the photomultiplier
was digitized using an analog to digital converter on a com-
puter and a fast Fourier transformation (FFT) of the signal
gave the oscillation frequency.

For these experiments the chamber height H = 5 cm and
the temperature difference between the bottom and top sur-
faces was approximately 120 K. The dodecane used as the
nucleating fluid was obtained from Aldrich with stated pur-
ity of at least 99% and was degassed repeatedly by the
freeze–pump–thaw method and transferred to the cloud
chamber under vacuum. The carrier gas was research grade
helium (99.999% pure). The thermophysical properties of
dodecane are given in Ref. [2]. The dependence of the fre-
quency of oscillations on both temperature and pressure
was investigated.

In the regime of the oscillatory nucleation, droplets are
formed in discreet clouds or pulses. The signal from the
photomultiplier displayed in Fig. 2 shows the distinct peri-
odic nature of this regime. The chamber parameters for the
measurements in Fig. 2 are given in Table 1. In Fig. 2 it is
observed that as the temperature difference between the top
and bottom surfaces increases the scattered light signal
transitions from random to weak and then to strong oscil-
lations. It is important to emphasize that these experiments
were conducted in such manner that the temperature was
approximately constant at position of the maximum nucle-
ation rate for all the experiments.
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A strong correlation is apparent between the tempera-
ture difference (Tb � Tu) and intensity of scattering light
by droplet cloud, presented in Fig. 2, while there is only
a weak correlation between the temperature difference
and the period of oscillation. This implies that the temper-
ature difference affects both the nucleation process and the
droplet growth process, and the feedback mechanism that
causes oscillatory nucleation compensates for increases in
the temperature difference. As many of the parameters
within DCC cannot be directly measured mathematical
simulation of oscillatory nucleation behavior can provide
significant insight of the performance of this feedback
mechanism.

3. Mathematical model

The aim of the mathematical model is to calculate the
basic parameters of oscillatory nucleation in DCC, do
not using empirical fitting parameters. In fact, we will sim-
ulate the process shown in Fig. 3, which is the idealization
of the experimental results. Simulation of the interrelation
between of shape of optical signal and nucleation process
in DCC would require a more powerful mathematical
model.

The number density of the vapor molecules, n(x, t), is
governed by the diffusion equation with moving sink of
variable intensity (the cloud of falling and growing
droplets)

otnðx; tÞ ¼ ox DðT ðxÞÞoxnðx; tÞ½ � � IðRðzðtÞÞ; hnðzðtÞ; tÞiÞ; ð1Þ
where hn(z(t), t)i is the average vapor density near the cen-
ter of mass of the droplet cloud, D(T(x)) is the temperature
dependent diffusion coefficient, T(x) is the temperature pro-
file, I is a function that describes the condensation of vapor
on the moving droplets, R(z(t)) and z(t) are the average
radius and position of droplet in the cloud respectively.

The position of droplet cloud, z(t), is determined by the
equation

dz
dt
¼ vðR; hnðzðtÞ; tÞiÞ; ð2Þ

v is the velocity of the droplet cloud, is determined by the
drag, gravitational, and thermophoretic forces on the drop-
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Fig. 3. The idealized oscillatory process to be simulated by the mathe-
matical model. T is the period of oscillation.
lets in the cloud. Since a steady-state velocity is reached in
less than 10�7 s [9], the velocity the droplets of a given ra-
dius can be determined from the equilibrium of these
forces.

Droplet growth is described by the following equation:

dRðtÞ
dt
¼ LðRÞ hnðzðtÞ; tÞi � hnsatðzðtÞÞi½ �; ð3Þ

where nsat(z(t)) is the number density of saturated vapor for
corresponding temperature, L describes isothermal mass
transfer between droplet and vapor and is a nonlinear func-
tion of the Knudsen number [9]. Exact expressions for the
function L are available for both the free molecular and the
diffusion regimes, and in the transition regimes the inter-
polation is used [9].

The expression for the vapor sink I is

I ¼ 4pR2NLðRÞ hnðzðtÞ; tÞi � hnsat T ðzðtÞÞ½ �i½ �ql=m; ð4Þ
where N is the number density of droplets in the cloud, the
ql and m, are, correspondingly, mass density and the mass
per molecule of the condensing material.

To combine analytical and numerical analysis of oscilla-
tory phenomena, we use the Galerkin method below [7].
Then the number density of a vapor is given by

nðx; tÞ ¼ nlðxÞ þ
X

i

AiðtÞ sin
pxi
H

� �
; ð5Þ

where sine functions are chosen as trial functions, Ai(t) are
unknown amplitudes of these modes (trial functions). The
linear vapor profile nl(x) exactly satisfies to the boundary
conditions:

nlðxÞ ¼ nb þ
nu � nbð Þx

H
; ð6Þ

where nb and nu, are, correspondingly, saturated vapor
density, for temperatures Tb and Tu at the top and bottom
of the DCC.

The averaged vapor density in the droplet cloud
hn(z(t), t)i is determined from

hnðzðtÞ; tÞi ¼ 1

d

Z zþ0:5d

z�0:5d
nðy; tÞdy; ð7Þ

where d is the width of droplet cloud in the steady-state
regime [9,11]. Similarly, the averaged value of saturated
vapor in the cloud hnsat(z)i, is determined by the expression:

hnsatðzÞi ¼
1

d

Z zþ0:5d

z�0:5d
nsat T ðyÞ½ �dy.

Since the partial pressure of helium is much larger than
partial pressure of dodecane for all the experiments pre-
sented here, it is reasonable to assume that the heat con-
ductivity removes the latent heat of the phase transition
in DCC. Therefore, the steady-state solution to the temper-
ature profile in the DCC can be used in simulating oscilla-
tory nucleation. If the heat transfer played a substantial
roll in the oscillatory nucleation process, two independent
oscillation frequencies would be expected in the experimen-
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tal data. Since the of Fourier transformation of experimen-
tal data shown in Fig. 2 indicates that there is only one
independent fundamental frequency, there is experimental
confirmation that the steady-state temperature profile is
maintained within the DCC during oscillatory nucleation.
In DCC the steady-state temperature profile T(x) is given
by the expression:

T ðxÞ ¼ T b þ T u � T bð Þx=H þ B sinðpx=HÞ; ð8Þ
where Tb is the temperature of the surface liquid pool on
the bottom of the chamber, Tu is the temperature of liquid
film on the top plate of the chamber. An iterative proce-
dure to calculate the parameter B is described in Ref.
[11]. Expression (8) takes into account two important
factors: concentration and the temperature dependence of
the thermal conductivity coefficient of a helium–vapor mix-
ture [12]. The steady-state temperature profile is shown in
Fig. 4. As the concentration of helium increases near top
plate of DCC, it increases the effective heat conductivity
of the helium–dodecane mixture. To conserve the heat flow
through the chamber, the temperature gradient has to de-
crease, therefore in the expression (8) the parameter
B < 0. This effect is clearly seen in Fig. 4. In contrast, the
diffusion coefficient decreases with the decreasing tempera-
ture near top surface of the cloud chamber, so the vapor
gradient increases in comparison with gradient near bot-
tom surface. For experimental runs displayed in Fig. 2,
our simulation, based on the new mathematical model,
shows that the temperature of the vapor–carrier gas
mixture at the saddle point of the free energy of formation
surface, Ts, is 297 K for all the experiments and the saddle
point is at the same height for all experiments.

Substituting Eq. (5) into Eq. (1), after standard transfor-
mations related to the Galerkin method, a system of ordin-
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Fig. 4. The steady-state temperature profile for the gas–vapor mixture in
the diffusion cloud chamber for the conditions of run a. (Tu = 278 K,
Tb = 397 K, Ptot = 1.2 · 104). Curve 1 is calculated with a linear approx-
imation of the profile and curve 2 is a steady-state solution obtained by
Galerkin’s method.
ary differential equations for amplitudes Ai is obtained [10].
In particular, for the amplitude of the first mode A1 we
have the following equation:

dA1ðtÞ
dt

¼ � 2p

H 3
ðnu � nbÞC1 �

2p2

H 3

X
i¼1

iAiC1i

� 16R2NL½Rðz; tÞ�q1

m
nlðzÞ � hnsatðzðtÞÞi
"

� 2H
dp

X
i

Ai

i
sinðipz=HÞ sinðidp=2HÞ

#
ð9Þ

and

C1 ¼
Z H

0

DðT ðxÞÞ cosðpx=HÞdx.

The integral, arising from the calculation of the first mode,
is equalZ H

0

sin2ðpx=HÞdx ¼ H=2.

Actually C1 determines the averaged vapor diffusion coeffi-
cient for temperature profile (8). The terms C1i take into ac-
count the diffusion interaction between the first mode and
ith mode of the number density of the vapor. This interac-
tion between the modes arises because vapor diffusion coef-
ficient strongly depends on a temperature of a mixture and
due to vapor condensation on droplets. C1i is expressed

C1i ¼
Z H

0

DðT ðxÞÞ cosðpx=HÞ cosðipx=HÞdx.

The equations for Ai have a similar form.
The more modes used in the calculation the more precise

the description of the mass transfer processes in DCC. In
the results below the first seven modes are used, because
the characteristic spatial dimension of the seventh mode
is already approximately equal to the width of nucleation
zone. The numerical results of the model show that seven
modes are enough for an accurate description of the oscil-
lations vapor density in DCC.

For the system of Eqs. (1)–(3) boundary conditions are

nð0; tÞ ¼ nsatðT bÞ ¼ nb; ð10Þ
nðH ; tÞ ¼ nsatðT uÞ ¼ nu. ð11Þ

The initial position of the droplet cloud z(0) coincides
with the position of the saddle point, zs, of the free energy
of cluster formation surface [9], we have

zð0Þ ¼ zs; ð12Þ
Aið0Þ ¼ A0i; ð13Þ

where A0i are arbitrary constants depending on the initial
vapor profile.

The system of ODE with the boundary conditions (10)–
(13) can be used for many purposes. If it is assumed that
N = 0, an analytical form the steady-state vapor profile
in the DCC can be obtained. Using this steady-state vapor
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profile the value of vapor molecule number density at the
saddle point of free energy cluster formation surface, ns,
can be determined. To obtain the dimensionless value of
the amplitudes Ai as shown in Figs. 6 and 7, we use ns as
the scale. Only the first two amplitudes significantly affect
the vapor profiles in the chamber during oscillation. There-
fore, initially the steady-state values of all seven amplitudes
are calculated and used as initial amplitudes for the third
and higher modes during the simulation of the oscillatory
nucleation.

To illustrate for run (a) in Fig. 2: zs/H = 0.65,
nb = 1 · 1024 mol/m3, nu = 7.8 · 1020 mol/m3, and ns =
3.6 · 1023 mol/m3. Assuming a linear vapor profile at zs

would give nl(zs) = 3.5 · 1023 mol/m3. Calculation shows
that for the dodecane–helium mixture the steady-state
vapor profile is convex compared to the temperature
profile.

4. Simulation of oscillatory regime nucleation

For conditions experiment ‘a’ the position of the droplet
cloud during a single period of oscillation is displayed in
Fig. 5a; the averaged droplet radius in the cloud versus
time is shown in Fig. 5b. As seen in Fig. 5a there is a sub-
stantial period (about 0.01 s) during which the droplets do
not move from nucleation zone, because the gravity is prac-
tically get balanced by thermophoretic force. In addition,
the height where the droplet radius reaches 25 lm is close
to the position of the saddle point on free energy surface
[9]. Thus, our simulations confirm that the height at which
the droplets become visible is the same for all experiments
presented in Fig. 2. As seen in Fig. 5 larger droplets have a
larger velocity, therefore under conditions of diffusion-
controlled growth, larger droplets have smaller impact on
vapor profile (also see Fig. 8).

It is obvious that N is an important parameter in our
mathematical model. In principle, it can be measured
experimentally, but with our experimental setup it was
not practical to make this measurement. Therefore the
mathematical mode for oscillatory regime of homogeneous
nucleation in a DCC has three adjustable parameters: N

and the amplitudes of the first two modes: A1 and A2.

We have to use only one experimental result, the oscillation
period. Due to the rapid relaxation of the amplitudes of
other modes, we assume that initially all of the high mode
amplitudes are equal to their steady-state values.

A procedure has been developed to determine the values
of these three parameters using the available experimental
data and classical nucleation theory. There is only a limited
range of droplet concentrations, N, which will produce
oscillations of a given period. The first step is to determine
the value of N that produces oscillations close to the exper-
imentally determined frequency. Once this value has been
determined the amplitudes of the first two modes at the
start of nucleation are determined by an iterative process
by trying to minimize the difference between the experimen-
tally measured and calculated periods of oscillation. Using
these amplitudes as the initial values for the system of Eqs.
(1)–(3) we can now solve of our mathematical model
numerically. The model results must be self-consistent with
classical nucleation theory. This condition means that for
given N, the fraction N/J has to have the same order of
the as s1, where s1 time interval during which the amplitude
of the first mode is constant (the time over which nucle-
ation occurs during an oscillation); J is the classical nucle-
ation rate calculated from the supersaturation and
temperature at the saddle point of the free energy of forma-
tion surface in DCC. The value of N for the calculated
supersaturation can be determined with logarithmic accu-
racy, accuracy comparable to the accuracy of modern
cloud chamber measurements. The value of s1 determined
directly from simulation. Thus, the oscillation period and
the self-consistency condition help to determine all three
unknown parameters of mathematical model.

In particular, it was found that for run a, N = 5 ·
105 droplets/m3. This means also that the average distance
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between droplets in the cloud is much larger their radii and
we can consider their growth independently each other.

The evolutions of amplitudes of first three modes for a
oscillation period are shown in Fig. 6. The change of ampli-
tude of the first mode is large in comparison with the
amplitudes of higher modes. This computational fact
emphasizes the importance of accurately describing the first
mode for modeling oscillatory nucleation. The relaxation
time of the third mode is very short compared with the first
two. The excitation of the third mode is due to interactions
between the modes in the nonlinear model and the vapor
condensation on the droplets. The simulations show that
only the interactions between neighboring modes are of
substantial importance. As the number of the mode
increases the maximum amplitude of the mode decreases,
and it takes less time to reach the steady-state value after
droplet cloud reaches the bottom of the chamber. The evo-
lution of the amplitudes A4 and A5 is shown in Fig. 7. The
steady-state values of the amplitudes are not equal to zero,
however the time required to restore these steady-state
value is shorter that for the first mode. The characteristic
times of relaxation of ith mode decreases according to
the law i�2. The range of amplitudes of the higher order
modes is much smaller; therefore it is their contributions
to the vapor density is insignificant. For the chamber con-
ditions of the experiments presented in Fig. 2 the maximum
amplitude of the higher modes (i > 3) is practically the
same, although shapes of curves differ slightly. The smaller
the temperature difference across the chamber, the smaller
the rate of change of all the amplitudes.

The supersaturation profile S(x, t) is calculated from

Sðx; tÞ ¼ nðx; tÞ=nsat½T ðxÞ�;

where nsat is the number density of the saturated vapor at
the temperature T(x). For the conditions of run (a) the
supersaturation profiles are shown in Fig. 8 at different in-
stances during the oscillation.

Near the bottom (x < 0.3H) and the top (x > 0.85H) of
the chamber the supersaturation remains practically con-
stant throughout the oscillation. In the lower part of the
chamber the velocity of the falling droplets is high, so their
residence time is small enough that the cloud has only a
minimal effect on the vapor density. The supersaturation
near the saddle point (zs � 0.65H) changes significantly,
during and after nucleation. The instantaneous nucleation
rate decreases by several orders of magnitude when the
supersaturation has dropped about 6%. The effects of drop-
let growth and motion expand the spatial disturbances of
the supersaturation profile. After the droplet cloud falls to
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the bottom, the restoration process is fastest in the upper
part of chamber because of the relatively low vapor density.

The dimensionless free energy formation for the critical
cluster formation at the saddle point height zs is shown as a
function of time in Fig. 9. We see that during a short period
of time, which is about ten percentage of the oscillation
period the dimensionless free energy increases due to the
vapor depletion. This corresponds to a drop in the nucle-
ation rate of more than two orders of the magnitude.

It follows from our results that there are three character-
istic times for oscillatory nucleation: a relatively short
nucleation time, significantly longer time for the droplets
growth and fall, and a relaxation time. The relaxation time
is even longer time (about 2/3 of oscillation period) for dif-
fusion to restore the vapor profile.

5. Results and discussion

We did the experimental investigation of oscillatory
regime of diffusion cloud chamber (DCC) for mixture of
helium and dodecane vapor. The experiments were orga-
nized in such matter that for all experiments the temperature
at the plane of maximum nucleation rate were practically the
same. The digitalized data of intensity of scattering light on
falling droplets has been obtained. From the scattered light
signal of the falling droplets we discovered that there is only
one the basic frequency of the oscillatory nucleation.
Although the total pressure has a significant effect on the
droplet growth rate in nucleation experiments [9], the funda-
mental frequency of the oscillations in the DCC did not
exhibit a significant dependence on the total pressure of
the vapor gas mixture in the chamber. The both time to
deplete and the time to restore of the vapor concentration
around the nucleation zone are directly proportional to
the diffusion coefficient. Moreover, it was found that the
visualization position of droplet cloud is practically the
same for all experimental conditions in the table.
Analysis shown that the single basic frequency means
that the heat processes has a steady-state character in
DCC. For avoiding the free convection in DCC the partial
pressure of the carrier gas (helium) must be significantly
higher than the partial pressure of the vapor. Therefore,
the heat transfer processes are practically not affected by
the changes in the vapor concentration near the nucleation
zone and maintain the steady-state character. This is if dif-
ferent from the vast majority instances with oscillatory
phase transition phenomena where the release of the latent
heat of the phase transition plays main role.

New nonlinear mathematical model of oscillatory nucle-
ation in a DCC is developed. This model includes the feed-
back between nucleation rate from one side and heat and
mass transfer in gaseous phase and droplets growth and
motion, from another side. Simulations, based on new
mathematical model, shown that the period of oscillation
is equal to sum of the durations of two processes: time of
droplet falling on the bottom chamber and the diffusion
restoration time. Diffusion restoration time is the time of
restoration of vapor profile in the nucleation zone after
falling of droplet cloud on the bottom of the chamber.
The shape of intensity of scattering light, shown in
Fig. 2, is the results of a finite width of nucleation zone.

It is worth to make the estimation of the oscillation per-
iod in diffusion cloud chamber. For typical DCC the width
of nucleation zone d is about 0.1H and it is situated at the
height zs is about 0.6–0.7H [9]. Then the estimation of the
falling time tf is

tf �

ffiffiffiffiffiffi
2zs

g

s
; ð14Þ

where g is the gravity. For our DCC, we have that
tf � 0.085 s, that well corresponds with numerical results
for run a.

An estimation of the restoration time for the first mode,
t*, can be obtained using the Galerkin method [10,13]. The
approximate formula for t* is

t� ¼ � H 2

Dp2
lnð0:1Þ; ð15Þ

where D is the vapor diffusion coefficient . In particular, for
conditions of our experiments we have from (15)
t* � 0.12 s. So, the sum of tf and t* is about 0.2 s, that agree
reasonably well with experimental data.

From the simulation results it is apparent that the oscil-
latory nucleation takes place only if there is significant
depletion of vapor in the nucleation zone of DCC. This will
occur when the droplet diameter becomes larger than the
mean free path of the vapor molecules, kv [9], because
vapor condensation on droplets is most substantial when
droplets are large enough. In other words, when the Knud-
sen number, defined as Kn = kv/R, less than 0.1. From the
simulation data and comparing terms at the Eq. (1), it can
be established that oscillatory nucleation takes place if the
dimensionless parameter C > 0.05, where
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C ¼ 4pNð10kvÞH 2. ð16Þ
The parameter C is an estimate of the relationship between
the two terms on the right-hand side of Eq. (1). If number
and size of droplets are large enough and C > 0.05, the drop-
let cloud will create a significant depletion of the vapor con-
centration in nucleation zone. C has a strong dependence on
the chamber height, H, which results from that the role that
the diffusion mechanism for transporting the vapor plays in
the oscillatory nucleation. This is a substantial deviation
from the simplified mathematical model of oscillatory nucle-
ation in DCC developed by Brito and Heist [4]. When C is
60.05, small amplitude oscillations of nucleation rate are
observed as shown in Fig. 2g. For substances with similar
diffusion coefficients and nucleation zone parameters it is
expected that the fundamental frequency will be nearly
equal, but the amplitude of the vapor oscillation depends
on the product N(10kv) and may vary significantly.

The value of N at which a vapor depletion effect large
enough to stop the nucleation process can be obtained
from [6]

JðnÞ ¼ Jðn0Þ
n
n0

� �g�þ2

; ð17Þ

where g* is the number of molecule at a critical cluster. The
equation describes the change in the nucleation rate if the
number density of vapor changes from n0 to n. For
g* � 30 (a typical value for the critical cluster size of dode-
cane in the nucleation zone for the experiments presented
here) a 5% depletion of the vapor density would decrease
the nucleation rate by more than one order of magnitude.
The model shows that that the vapor density decreases
by 6–7% of its maximum value during the oscillations ob-
served in Fig. 2.

Using the model additional information about the drop-
let cloud can be extracted from the limited experimental
data. In particular, we have that the effective nucleation
rate J during the particle creation phase of an oscillation
is equal to J � 2 · 107 droplet/s m3; the dimensionless free
energy of formation for the critical cluster DU/kTs, is equal
to 50.2. For the steady-state regime of nucleation at the
same Ts our calculation gives that DU/kTs � 57. The differ-
ence is the number of created droplets per unit of volume in
the cloud, N, and the duration of the nucleation period.
The larger the diffusion driven flow the later depletion
starts and, correspondingly the longer the duration of the
nucleation period. The intensity of the diffusion flow is
mainly determined by the temperature difference Tb � Tu

and vapor nature.
As the simulation demonstrates, the width of the scattered

light peaks presented in Fig. 2 reflects the width of nucleation
zone in DCC. Droplets formed in the lower part of the nucle-
ation zone fall for a shorter time prior to reaching the He–Ne
detection laser than droplets created near or above the saddle
point of the cluster free energy surface in the chamber. A
simple estimation based on expression (14) gives the charac-
teristic temporal width ts of the optical signal in Fig. 2
ts �

ffiffiffiffiffiffi
2zs

g

s
d

4zs

for experiment (a) ts is about 6 · 10�3 s. Furthermore, the
expression shows that the light pulse duration is practically
the same for all the experimental results shown in Fig. 2, in
agreement with what was observed experimentally.

The shape of signal gives data to investigate the problem
of the finite width of the nucleation zone in cloud chamber.
Currently, experimental methods cannot resolve nuclei cre-
ated in different regions of the nucleation zone. Therefore
valuable information about the spatial distribution of the
nucleation rate is not available. In the framework of math-
ematical model developed here this information cannot be
extract from experimental data. However a new, more
powerful mathematical model is under development.

Finally to mention, that the experiments in DCC, at
which impossible to neglect this diffusion interaction
between growing droplets, are considered in [11].
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